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Solution 10

1. Show that the bounded sequence of sequences {en} where en = (0, · · · , 0, 1, 0, · · · , ) is the
sequence with 1 at the n-th place and equal to 0 elsewhere has no convergent subsequences
in the space l2. Recall that l2 is the space consisting of all sequences a = {an} satisfying
‖a‖2 = (

∑
n a

2
n)1/2 <∞

Solution. Suppose on the contrary this sequence has a limit a = {an}. (I have used
bold letters to denote sequences.) Then limn→∞ ‖en − a‖ = 0. From the definition of the
l2-norm it means every component of en − a tends to zero. Since the k-component of en
becomes zero when n > k, the sequence a must be the zero sequence. Therefore, in case
the sequence formed by en’s has a convergent subsequence, it also converges to the zero
sequence in the l2-norm. But this is impossible since limn→∞ ‖enk

− 0‖ = 1.

2. Consider {fn}, fn(x) = x1/n, as a subset F in C[0, 1]. Show that it is closed, bounded, but
has no convergent subsequence in C[0, 1].

Solution. It means F is not precompact. F is bounded as ‖fn‖∞ ≤ 1 for all f ∈ F .
Next, we claim that it has no convergent subsequence. Suppose on the contrary there is
one subsequence {fnj} converges to some g ∈ C[0, 1]. Then, for each x, one must have
limj→∞ fnj (x) = g(x). However, it is clear that the pointwise limit of fn is the function
f(x) = 1, x ∈ (0, 1] and equals 0 at x = 0. So g must coincide with f , but this is impossible
as g is continuous on [0, 1] but f is discontinuous at x = 0.

We still need to check that F is closed. Let {hn} be a sequence in F converging to some
h ∈ C[0, 1]. Consider two cases. First, this sequence contains infinitely many distinct
functions. Then we can extract a subsequence from it which is also a subsequence of {fn}.
As above we see that this is impossible because h is continuous but f is not. Second, {hn}
contains only finitely many functions. Then one function, say, fn0 , appears infinitely many
times. We can take a subsequence {hnj} consisting of the single fn0 . It must be true that
h = fn0 ∈ F . We conclude that F is a closed set.

3. Prove that {cosnx}∞n=1 does not have any convergent subsequence in C[0, 1].

Solution. By Arzela Theorem it suffices to show that this sequence has no subsequence
that is equicontinuous. Suppose on the contrary, given ε > 0, there exists some δ > 0 such
that

| cosnkx− cosnky| < ε, ∀k ≥ 1, x, y, |x− y| < δ.

Now, take ε = 1 so δ is fixed. Take x = 0 and y = π/n. When n is large |0−π/n| < δ, one
should have | cosn0 − cosnπ/n| < ε = 1. But actually we have | cosn0 − cosnπ/n| = 2,
contradiction holds.

4. Show that any finite set in C(G) is bounded and equicontinuous.

Solution. Recall that any continuous function in G is uniformly continuous. (The proof
is similar to the special case C[a, b].) Now, let the finite set be {f1, · · · , fN}. Since each
fk is uniformly continuous, for ε > 0, there is some δk such that |fk(x) − fk(y)| < ε for
all x, y, |x − y| < δk. If we take δ = min{δ1, · · · , δN}. Then |fk(x) − fk(y)| < ε for
x, y, |x − y| < δ and all k. On the other hand, it is clearly bounded by the maximum of
‖f1‖∞, · · · , ‖fN‖∞.
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5. Let E be a bounded, convex set in Rn. Show that a family of equicontinuous functions is
bounded in E if it is bounded at a single point, that is, if there are x0 ∈ E and constant
M such that |f(x0)| ≤M for all f in this family.

Solution. By equicontinuity, for ε = 1, there is some δ0 such that |f(x) − f(y)| ≤ 1
whenever |x− y| ≤ δ0. Let BR(x0) a ball containing E. Then |x− x0| ≤ R for all x ∈ E.
We can find x0, · · · , xn = x where nδ0 ≤ R ≤ (n+ 1)δ0 so that |xn+1−xn| ≤ δ0. It follows
that

|f(x)− f(x0)| ≤
n−1∑
j=0

|f(xj+1 − f(xj)| ≤ n ≤
R

δ0
.

Therefore,

|f(x)| ≤ |f(x0)|+ n+ 1 ≤M +
R

δ0
∀x ∈ E, ∀f ∈ F .

6. Let {fn} be a sequence of bounded functions in [0, 1] and let Fn be

Fn(x) =

∫ x

0
fn(t)dt.

(a) Show that the sequence {Fn} has a convergent subsequence provided there is some
M such that ‖fn‖∞ ≤M, for all n.

(b) Show that the conclusion in (a) holds when boundedness is replaced by the weaker
condition: There is some K such that∫ 1

0
|fn|2 ≤ K, ∀n.

Solution.

(a) Since |Fn| ≤
∫ x
0 |fn(t)|dt ≤M , and |Fn(x)−Fn(y)| ≤

∫ x
y |fn(t)|dt ≤ |x−y|M , {Fn} is

uniformly bounded and equicontinuous. Then it follows from Arzela-Ascoli theorem
that {Fn} is sequentially compact.

(b) It follows from the Cauchy-Schwarz inequality that

|Fn(x)− Fn(y)| ≤
∫ x

y
|fn(t)|dt ≤

(∫ x

y
12dt

)1/2(∫ x

y
|fn(t)|2dt

)1/2

≤
√
K
√
|x− y|.

Similarly one can show that {Fn} is uniformly bounded. Then apply Arzela-Ascoli
theorem.

7. Prove that the set consisting of all functions G of the form

G(x) = sin2 x+

∫ x

0

g(y)

1 + g2(y)
dy ,

where g ∈ C[0, 1] is precompact in C[0, 1].

Solution. Straightforward to check ‖G‖L∞ ≤ 2 and ‖G′‖L∞ ≤ 3. By Ascoli’s Theorem
this set is precompact.

8. Let K ∈ C([a, b]× [a, b]) and define the operator T by

(Tf)(x) =

∫ b

a
K(x, y)f(y)dy.
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(a) Show that T maps C[a, b] to itself.

(b) Show that whenever {fn} is a bounded sequence in C[a, b], {Tfn} contains a conver-
gent subsequence.

Solution.

(a) Since K ∈ C([a, b] × [a, b]), given ε > 0, there exists δ > 0 such that |K(x, y) −
K(x′, y)| < ε, whenever |x− x′| < δ. Then for x, x′ ∈ [a, b], |x− x′| < δ, one has

|(Tf)(x)− (Tf)(x′)| ≤
∫ b

a
|K(x, y)−K(x′, y)||f(y)|dy ≤ |a− b|‖f‖∞ε.

Hence Tf ∈ C[a, b].

(b) Suppose supn ‖fn‖∞ ≤M <∞. It follows from the proof of (a) that δ can be taken
independent of n. Hence {fn} is equicontinuous. Furthermore, since |(Tfn)(x)| ≤∫ b
a |K(x, y)||fn(y)|dy ≤ M(b − a)‖K‖∞, {fn} is uniformly bounded. Then it follows

from Arzela-Ascoli theorem that {Tfn} contains a convergent subsequence.

9. Let f be a bounded, uniformly continuous function on R. Let fa(x) = f(x + a). Show
that for each l > 0, there exists a sequence {an}, an → ∞, such that {fan} converges
uniformly on [0, l].

Solution. Let {an} be a sequence with an → ∞. Since f is bounded and uniformly
continuous on R, it follows that {fan} is uniformly bounded and equivcontinuous on [0, l].
Apply Ascoli-Arezela theorem to obtain a subsequence converging uniformly on [0, l].

Note. The lesson is, if you keep watching dramas in TVB every evening, soon you find
some new one resembling an old one.

10. Optional. Let {hn} be a sequence of analytic functions in the unit disc satisfying |hn(z)| ≤
M, ∀z, |z| < 1. Show that there exist an analytic function h in the unit disc and a
subsequence {hnj} which converges to h uniformly on each smaller disc {z : |z| ≤ r}, r ∈
(0, 1). Suggestion: Use a suitable Cauchy integral formula.

Solution. Let D = {|z| < 1} be the unit disc. Let rn ↑ 1 be strictly increasing and
Dn = {|z| < rn}. For each n ∈ N, since hj is analytic in D, it follows from the Cauchy
integral formula that

hj(z) =
1

2πi

∫
|ζ|=rn+1

hj(ζ)

ζ − z
dζ, for |z| < rn.

Hence

|h′j(z)| = |
1

2πi

∫
|ζ|=rn+1

f(ζ)

(ζ − z)2
dζ| ≤ M

2π|rn+1 − rn|2
, for |z| < rn.

Since |h′j(z)| is uniformly bounded on Dn, it follows that {hj} is equicontinuous on each
Dn. Applying Ascoli-Arezela theorem to {hj} on each Dn step by step and then taking a
Cantor’s diagonal sequence, one obtains a {hnj} which converges to h uniformly on each
smaller disc {z : |z| ≤ r}, r ∈ (0, 1). It follows from uniform convergence that

h(z) =
1

2πi

∫
|ζ|=rn+1

h(ζ)

ζ − z
dζ, for |z| < rn.

Hence h is analytic in D.


